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1 Introduction

Full-information rational expectations (FIRE) require that forecast er-

rors be unpredictable from forecast revisions (assuming quadratic loss).

The influential work of Coibion and Gorodnichenko (2015, CG hereafter)

suggests testing this relationship by first aggregating the forecasts across

individuals and then estimating the aggregated time series regression. In

contrast, Bordalo, Gennaioli, Ma, and Shleifer (2020, BGMS hereafter)

recommend estimating the average relationship by first running separate

regressions for each individual and then aggregating (i.e., taking the mean

or median of the coefficients obtained from the first step). While CG

(2015) document the underreaction of consensus forecasts to news relative

to FIRE, BGMS (2020) find that individual forecasters typically overreact.

So there remains a puzzle about whether forecasters overreact or under-

react. Given that the expectations formation process significantly affects

macroeconomic dynamics and policy decisions, a careful examination of

the magnitude of deviation from FIRE cannot be overemphasized.

In this paper we analyze both CG’s “average then estimate” approach

and the BGMS’ “estimate then average” approach. The target parameter

in CG is the ratio of information rigidity to the Kalman gain, which we

designate as “relative information rigidity.” We show that both estimators

are asymptotically biased (as estimators of relative information rigidity)

in the presence of public noise. This is because when regressing forecast

error on forecast revisions (with coefficient given by the relative informa-

tion rigidity), the regression errors are correlated with forecast revisions

due to the presence of public noise in both terms. Private noise also plays
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a role in the bias, but in the “average then estimate” approach its impact

diminishes as the number of agents increases. As shown in Theorem 1 and

Corollary 1 below, the bias depends upon the Kalman gain, the represen-

tativeness parameter θ (which governs the degree to which beliefs deviate

from rational updating), and the persistence of the underlying signal.

Consistent estimation of relative information rigidity will facilitate

testing of forecast efficiency. To circumvent the problem of asymptotic

bias in the ordinary least squares estimators, we turn to the methodology

of instrumental variables. We demonstrate in this paper that instrumental

variables, constructed as past forecast errors, are uncorrelated with the

regression errors (i.e., being exogenous), yet they may be highly correlated

with the independent variables (in the regression of forecast error on fore-

cast revision); see Theorem 2 and Corollary 2. Our simulations find this

technique works well if θ = 0, because the instrumental variables have

sufficient correlation with the covariates to produce a viable estimator. In

contrast, as θ increases from zero (it is bounded above by the relative in-

formation rigidity), the correlation of covariate and instrumental variable

decreases sharply. Fortunately, Moreira (2003) proposes a likelihood ratio

test that remains robust in the presence of weak instrumental variables.

In our specific context, where we have only one instrumental variable, the

likelihood ratio test of Moreira (2003) simplifies to the test proposed by

Anderson and Rubin (1949), and is further extended by Mikusheva and

Sun (2022) to a jackknifed version that is robust to heteroscedasticity.

Our work builds on the panel data literature on aggregation and pool-

ing. See, for example, Baltagi, et al. (2000) and Pesaran and Zhou (2018)

for general discussions on “to pool or not to pool.” Bonham and Cohen
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(2001) further argue that, due to heterogeneous individual forecasts and

private-information bias, neither aggregation nor pooling is a valid strat-

egy in testing the rational expectations hypothesis using survey data. We

contribute to this literature by showing that both aggregation and pooling

are appropriate only if we instrument individual (average) forecast revi-

sions by individual (average) past forecast errors in a panel data setting.

Our work contributes to the recent debate on underreaction or over-

reaction to new information in macro forecasts. CG (2015), Drager and

Lamla (2017) and Giacomini, et al. (2020) highlight underreactions in in-

flation forecasts from professionals, consumers, and market participants.

Lahiri and Sheng (2008) note that professional forecasters underweight

public information in one-year-ahead GDP and inflation forecasts. Fuhrer

(2018) discusses forecaster underreactions and argues for “intrinsic in-

flation persistence.” Ryngaert (2023) explains information frictions by

agents’ misperceptions about the persistence of the underlying process.

Chang and Levinson (2023) identify time-varying inefficiency in the Fed-

eral Reserve staff’s GDP forecasts.

On the other hand, Binder (2017) reveals that low-frequency data

and survey rounding can overestimate information stickiness. Baker, et

al. (2020) observe declining information rigidity after natural disasters.

BGMS (2020) support the absence of information stickiness at the in-

dividual forecaster level. Messina, et al. (2015) find over-responsiveness

in Greenbook forecasts. Bürgi and Ortiz (2022) document evidence of

individual overreaction to news at the quarterly frequency.

Our contribution involves proposing an instrumental variables approach

to reduce asymptotic bias, as well as suggesting a likelihood ratio test –
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with correct size and power in the presence of weak instrumental variables

– for forecast efficiency tests (where efficiency is based on quadratic loss).

This approach indicates that professional forecasters, both at the individ-

ual and aggregate levels, tend to underreact to new information, and thus

resolves the puzzle of underreaction/overreaction in macro forecasts.

The paper proceeds as follows. Section 2 presents the forecast effi-

ciency test, derives the asymptotic bias of both “average then estimate”

and “estimate then average” estimators, proposes an instrumental vari-

ables approach, and discusses the likelihood ratio test. Section 3 explores

the small sample performance of the likelihood ratio test in Monte Carlo

experiments. Section 4 illustrates an empirical study in testing efficiency

in professional’s forecasts. Section 5 concludes. Additional simulation

results and derivations are relegated to the Appendix.

2 Analysis of Regressing Forecast Error on

Forecast Revision

2.1 Forecast Efficiency Tests and Their Biases

In CG (2015), a (latent) signal process {πt} – which is observed under

the obfuscation of private noise – is forecasted h steps ahead by N agents.

Specifically, each agent observes a noisy process {yit} given by

yit = πt + εit,
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where {εit} is i.i.d., mean zero, and has a common variance. We make

a slight generalization of the CG framework, supposing that the noise

process is the straight summation of a public noise ιt and a private noise

ηit:

εit = ιt + ηit.

We assume that the public noise {ιt} is i.i.d. with common variance

σ2
ι , and that the private noise {ηit} is i.i.d. and agent-dependent, but

with common variance σ2
η; the two noise processes are independent of one

another. Hence the variance of εit is σ2
ι + σ2

η, which is denoted by σ2
ε for

short; so σι = 0 corresponds to the CG framework. Note that these latent

public and private noises only enter our calculations through their sum εit.

The signal is assumed to be an autoregressive process of order one, i.e.,

πt = ρ πt−1 + ut

with −1 < ρ < 1 and {ut} an i.i.d. Gaussian sequence with mean zero

and variance σ2
u. We denote the (purely rational) h-step ahead forecast

by πit+h|t for agent i, where the notation conveys that a conditional expec-

tation of πt+h is computed based on the information of the ith agent up

through time t (i.e., the set {yit, yit−1, . . .}). The average forecast over all

such agents is denoted πt+h|t, i.e., N−1∑N
i=1 π

i
t+h|t = πt+h|t.

CG (2015) study the regression of the average forecast error πt+h −

πt+h|t upon the average forecast revision πt+h|t − πt+h|t−1 (“average then

estimate”); the forecast efficiency test examines the null hypothesis that

the regression coefficient is zero. Instead of considering this type of re-

gression based on aggregates, one can use individual agents, constructing
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N individual regressions and taking the average of the coefficients (“esti-

mate then average”). Note that the forecast efficiency test examined in

this paper is distinct from the weak efficiency test introduced by Nordhaus

(1987). Weak efficiency entails that current forecast errors should not be

correlated with past forecast revisions, as described in Proposition 1 in

Nordhaus (1987)’s work. In contrast, our test focuses on the absence of

correlations between current forecast errors and current forecast revisions.

This basic framework is extended and encapsulated by the so-called

Diagnostic Kalman filter (DKF) introduced in BGMS (2020), which allows

explicitly for “distorted retrieval from memory” and generalizes the purely

rational framework of CG. The DKF framework supposes that forecasts

are updated using a measure of agent sentiment; Proposition 1 of BGMS

provides the updating mechanism for the DKF, defined for any value of

θ ≥ 0, which “denotes the extent to which beliefs depart from rational

updating due to representativeness.” Their result states that

πi,θt|t = πit|t−1 + (1 + θ)G (yit − πit|t−1), (1)

where G = P/(P + σ2
ε ) and P is the one-step (rational) prediction mean

squared error (i.e., P = Var[πt − πit|t−1]).1 Actually, (1) is a slight gener-

alization of equation (10) in BGMS, since in that paper there is no public

noise. For our purposes we can take (1) as the definition of πi,θt|t , noting

that the θ = 0 case of (1) is the classic Kalman filter (where G represents

the so-called Kalman gain) studied in CG (but extended to include public
1Although it may seem that P , and hence G, should depend on i, it does not, since

P is expressible as the solution to a quadratic equation that depends on the parameters
ρ, σ2

u, and σ2
ε , none of which depend on i.
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noise). It is shown in BGMS that πi,θt+h|t = ρhπi,θt|t ; the authors also define

πθt+h|t by averaging πi,θt+h|t over the N agents.

BGMS (and CG) consider the regression of forecast error on forecast

revision, and in their Proposition 2 present expressions for the coefficient

on forecast revision, labeled as β; in CG this coefficient is found to be

β = (1 − G)/G. CG refer to 1 − G as the information rigidity, and note

that a value of zero corresponds to G = 1. Thus β = (1 − G)/G is the

ratio of information rigidity to the Kalman gain; we call this “relative

information rigidity,” noting that it is not constrained to be in [0, 1], but

can be any non-negative value. The case of β = 0 corresponds to G = 1

(the absence of information rigidity), i.e., forecast efficiency in the CG case

of no public noise. We are interested in estimation of β from a regression of

forecast errors on forecast revisions, thereby obtaining insight into forecast

efficiency; estimates of β that are significantly different from zero indicate

inefficiency and the presence of a degree of information rigidity for β > 0.

The estimation of β in BGMS and CG is based on the assumption

that the regression errors are uncorrelated with the forecast revisions.

However, the presence of public noise can invalidate this assumption, as

our results below indicate. In particular, we investigate both consensus

and individual forecasts, either under the rational (θ = 0) or irrational

(θ > 0) frameworks, when either or both of public and private noise is

present. We find that the forecast efficiency test of β = 0 based upon

ordinary least squares (OLS) can be degraded due to bias in its estimator.

Our results explicitly show how the regression errors are connected to

forecast revisions, and thereby how bias can arise.

Let wit = πt+h − πi,θt+h|t be the DKF h-step ahead forecast error, which
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is supposed to be eventually observable (since the signal πt+h becomes

known in time period t + h). Also, let xit = πi,θt+h|t − π
i,θ
t+h|t−1 be the DKF

forecast revision. The consensus regression considered by CG is

wt = β xt + et,

where wt = N−1∑N
i=1 w

i
t and xt = N−1∑N

i=1 x
i
t are the consensus forecast

errors and forecast revisions, respectively. There is no constant term in

the regression, because both forecast errors and forecast revisions have

mean zero. Here, the target of estimation is β = (1− G)/G, the relative

information rigidity, where G = P/(P + σ2
ε ). The “average then esti-

mate” approach computes the OLS estimate of β based on the consensus

regression:

β =
∑
twtxt∑
t (xt)2 .

An extension of these ideas yields the individual regression:

wit = β xit + eit

for each 1 ≤ i ≤ N . As noted below equation (1), for each i the prediction

mean squared error P does not depend on i, and hence neither does G or

β. Then the individual OLS regression coefficient estimates are

β̂i =
∑
tw

i
tx
i
t∑

t (xit)
2 ,

and in the “estimate then average” approach we construct β̃ = N−1∑N
i=1 β̂i.

If the regression errors are uncorrelated with the covariates, then the
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estimates of relative information rigidity are asymptotically unbiased, but

as shown below this situation can fail when public noise is present. As

usual, bias is assessed via computing E[β̂i]−β (individual case) or E[β]−β

(consensus case).

To state our next result, we introduce some notations. Let νht =∑h−1
k=0 ρ

kut+h−k, and define the trivariate time series

f it =


εit

πt − πit|t−1

πit|t−1 − ρyit−1

 , (2)

which consists of the public and private noise εit, the past forecast error

(for the rational case θ = 0) πt − πit|t−1, and a function πit|t−1 − ρyit−1 of

the previous period’s information. This vector process, together with

τ = ρhG


1 + θ

1 + θ

θ/(1−G)

 γ = −ρh


1 + θ

θ

θ

 , (3)

is featured in our first result, which quantifies the bias arising from corre-

lation between the forecast revisions and the regression error.

Theorem 1. The regression of individual forecast error on forecast revi-

sion in the DKF framework can be expressed as

wit = 1−G
G

xit + νht − ρh((1 + θ)εit − ρθεit−1 + θut), (4)

i.e., the regression error is eit = νht −ρh((1 + θ)εit−ρθεit−1 + θut). For each

i, {f it} defined in (2) is a stationary time series with contemporaneous
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covariance matrix

Var[f it ] = diag{σ2
ε , P, ρ

2(1−G)2(P + σ2
ε )},

and the forecast revision covariate can be expressed as xit = τ ′f it; the

regression error is eit = νht + γ ′f it. The asymptotic bias of β̂i is

τ ′Var[f it ]γ
τ ′Var[f it ]τ

= −((1 + θ)2 + θ2ρ2)σ2
ε + (1 + θ)θP

G((1 + θ)2 + θ2ρ2)(σ2
ε + P )

.

Remark 1. The asymptotic bias for the individual regression can be re-

expressed as

−(1−G)
G

− θ(1 + θ)
(1 + θ)2 + θ2ρ2

,

which in the rational case (i.e., θ = 0) reduces to −(1 − G)/G = −β.

Hence the OLS estimator has mean tending to zero, indicating that forecast

errors are uncorrelated with forecast revisions. Specifically, the asymptotic

bias in the individual regression is zero if and only if G = 1, which cor-

responds to β = 0. More generally, when θ > 0 the asymptotic bias is

negative. Note that our result also covers the special case where there is

no public noise, in which case σ2
ε = σ2

η.

Clearly the bias of β̃ is the same as that of β̂i. On the other hand, in

the case of consensus forecasts – obtained by averaging over the agents –

we obtain a bias result somewhat different from that stated in Theorem 1.

Specifically, let P = Var[πt − πt|t−1] (which is the solution to a quadratic

equation similar to that used to define P , only involving σ2
ε = σ2

ι + σ2
η/N

in lieu of σ2
ε ) and G = P/(P + σ2

ε ). The “large-agent” form of this is

obtained by letting N →∞, in which case σ2
ε = σ2

ι and the private noise
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has no impact; further setting σι = 0 and θ = 0, we obtain the framework

of CG.

Corollary 1. The regression of consensus forecast error on forecast revi-

sion in the DKF framework can be expressed as

wt = 1−G
G

xt + νht − ρh((1 + θ)εt − ρθεt−1 + θut), (5)

i.e., the regression error is et = νht −ρh((1+θ)εt−ρθεt−1 +θut. Also, f t =

N−1∑N
i=1 f it is a stationary time series with contemporaneous covariance

matrix

Var[f t] = diag{σ2
ε , P , ρ

2(1−G)2(P + σ2
ε )},

and the forecast revision covariate can be expressed as xt = τ ′f t; the

regression error is νht + γ ′f t. The asymptotic bias of β is

τ ′Var[f t]γ
τ ′Var[f t]τ

= −(1 + θ)(1 + θ −G) + θ2ρ2(1−G)
G((1 + θ)2 + θ2ρ2)

.

Remark 2. The asymptotic bias for the consensus regression can be re-

expressed as

−(1−G)
G

− (1 + θ)(1 + θ −G/G)
(1 + θ)2 + θ2ρ2

,

which in the rational case (with θ = 0) is −(1 − G)/G − (1 − G/G). If

N = 1 we have G = G (since σ2
ε = σ2

ε in this case) and the result is

the same as that of Theorem 1. In contrast, the large-agent case (letting

N → ∞) yields σ2
ε = σ2

ι so that only public noise is featured in G; hence

in the CG case with σι = 0, we find G = 1 and the asymptotic bias is

zero. More generally, when θ > 0 the bias is negative.
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In summary, the “estimate then average” approach yields a bias de-

scribed in Theorem 1 and Remark 1, whereas the “average then estimate”

approach yields a bias given in Corollary 1 and Remark 2.

2.2 A Likelihood Ratio Test for Forecast Efficiency

In view of these asymptotic biases for the relative information rigidity, it

is of interest to use an alternative unbiased estimator. A natural idea is

to use instrumental variables. We seek new variables zit that are uncorre-

lated with the regression error eit of equation (4), and yet have non-trivial

correlation with the covariates; also, these instrumental variables must be

computable (available to us) at time t. Let vit = πt−πi,θt|t−1 be the one-step

ahead forecast error from the DKF, which will be known to us at time t+h

(when we investigate the regression of forecast error on forecast revision);

then we propose the instrumental variables

zit =


vit if θ = 0

vit−1 if θ > 0
. (6)

Note that the rational (θ = 0) and irrational (θ > 0) cases require different

treatment.

Theorem 2. In the DKF framework, the instrumental variables zit de-

fined in (6) are asymptotically uncorrelated with the regression error eit

of equation (4), and provide a consistent estimate of relative information

rigidity β = (1−G)/G.

It follows from the preceding result that the bias in the “estimate

then average” approach can be fixed by using the instrumental variables
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defined in Theorem 2, followed by averaging the resulting parameter es-

timates. In contrast, if we “average then estimate” then different instru-

mental variables are needed; it turns out that we can use the average

zt = N−1∑N
i=1 z

i
t, as the following result demonstrates.

Corollary 2. In the DKF framework, the consensus instrumental vari-

ables zt = N−1∑N
i=1 z

i
t are asymptotically uncorrelated with the consensus

regression error et of equation (5), and provide a consistent estimate of

relative information rigidity β = (1−G)/G.

To summarize, in equation (6), we define the instrumental variable

through lagged forecast errors. If θ = 0, we can use lag 1 or higher; but

if θ > 0, we must use lag 2 or higher. Since we don’t know a priori the

value of θ, in practice we recommend taking the instrumental variable to

be the two-period lagged forecast errors.

A practical concern with the use of instrumental variables is their

strength. According to Stock, et al. (2002), the first-stage F-statistic (for

regression of forecast revision on the instrumental variables) should be

larger than 10 in order for inference to be reliable. Moreira (2003) fur-

ther discusses the issue of weak instrumental variables, and proposes a

likelihood ratio test for the null hypothesis (i.e., β = 0) that is robust

(i.e., still correctly sized) to the presence of weak instrumental variables.

In our context, because there is only one instrumental variable, the like-

lihood ratio test of Moreira (2003) reduces to the test of Anderson and

Rubin (1949), which is asymptotically χ2 with one degree of freedom. This
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Anderson-Rubin statistic has the formula

∑
t ztwt√∑
t z

2
t Ω̂

(7)

in the consensus case, where Ω̂ = (∑tw
2
t − (∑t ztwt)2/

∑
t z

2
t )/(n − 3).2

To compute the Anderson-Rubin statistic for the individual case, simply

substitute zit and wit for zt and wt in (7) and the formula for Ω̂.

The Anderson-Rubin statistic can be rendered more robust to het-

eroscedasticity by implementing a jackknifed version, as proposed in Miku-

sheva and Sun (2022). Setting P = ztz
′
t/(z′tzt), the Mikusheva-Sun test

statistic is given by equation (2) of their paper, which in our context with

a single instrumental variable takes the form

∑
t6=s Ptsztzs√

2∑t6=s P
2
tsz

2
t z

2
s

. (8)

We choose to use in the denominator the basic variance estimate of Section

4.1 of Mikusheva and Sun (2022), as this estimator is guaranteed to be

positive. Straightforward modifications of (8) yield the individual case.

3 Simulations

We investigate the performance of the Anderson-Rubin statistic (7) based

on both consensus and individual forecasts, through simulations. Since

our simulations involve homoscedastic errors, we do not here study the

Mikusheva-Sun statistic (8), although this statistic is applied in our data
2Although the sample size is n, the common set of observations for forecast errors

and the instrumental variables has size n − 2, and we subtract 1 for the number of
instrumental variables to obtain n− 3 in the formula for Ω̂.
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analysis in Section 4.

We explore the Gaussian process defined in Section 2 with the following

parameter settings: N is either 10 or 50; σu = 1, σ2
ε = σ2

u · NSR, and

σι = ση = σε/
√

2, where the noise-to-signal ratio (NSR) is either 0 (non-

existent), .8 (low), or 1.6 (high). The null hypothesis of β = 0 occurs

if and only if σε = 0, in which case the signal is observed without error

(by all agents); this corresponds to NSR = 0. The persistence is either

low (ρ = .85) or high (ρ = .95), and we consider three values of θ: 0,

.5, or .9, corresponding to completely rational, moderate irrationality,

and substantial irrationality relative to FIRE. We also consider a fourth

setting, where θ is drawn randomly for each agent, independently from

a uniform distribution on [.3, 1.5]. We consider samples of size T = 500

(Tables 1 and 2) and 1,000 (Tables B.1 and B.2 of Appendix B); size and

power results are based on 10,000 Monte Carlo replications.

In the DKF framework, the weight on πit|t−1 in (1) is 1 − (1 + θ)G;

BGMS assumes in their Proposition 2 that this quantity is positive –

hence we require that θ < (1−G)/G = β, i.e., rationality is upper bounded

by relative information rigidity. We also enforce this requirement in our

simulations; note that this condition is violated for θ = .9 if ρ = .85

(for either the low or high NSR), so these cases are excluded from our

simulations. In the fourth setting, we increase NSR to 4.0 to guarantee

that θ < β in all cases.

We are interested in the size and power of the Anderson-Rubin statis-

tic used to test the null hypothesis (β = 0) of forecast efficiency against

the alternative hypothesis that β 6= 0. In each simulation study, we com-

pute the first-stage F-statistic for the consensus instrumental variables,
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obtained by the regression of consensus forecast revision on the lagged

consensus forecast error. We also compute the consensus Anderson-Rubin

statistic, obtaining a single statistic using the aggregated variables.

In contrast, for each individual case we obtain an Anderson-Rubin

statistic and p-value. These p-values can be combined according to Simes

(1986), as discussed in Sheng and Yang (2011), viz. the sorted p-values p(i)

are compared to iα/N (for 1 ≤ i ≤ N) and some given Type I error rate α,

and each null hypothesis that β is zero is rejected if at least one p(i) exceeds

the threshold. Equivalently, there is failure to reject if min1≤i≤N p(i)N/i >

α, and the composite p-value can be taken to be the largest α such that

one still fails to reject. Hence we report min1≤i≤N p(i)N/i as the composite

p-value.

Table 1: Test for forecast efficiency with N = 10 and T = 500

ρ NSR θ CONS IV F-stat CONS IV AR-stat IND IV AR-stats

.85

0 0 .0521 .0496 .0496

.8 0 1 .5901 .5926
.5 .0777 .0600 .0439

1.6
0 1 .9679 .9819
.5 .6626 .5218 .5612
.9 .0618 .0702 .0629

4.0 random .0895 .0935 .4802

.95

0 0 .0512 .0470 .0470

.8 0 1 .6906 .7299
.5 .0626 .0535 .0427

1.6
0 1 .9889 .9976
.5 .6104 .4963 .5567
.9 .0501 .0510 .0456

4.0 random .5123 .8674 .9975

Note: rejection rates are provided by process ρ = .85, .95, NSR = 0, .8, 1.6, 4.0, and
θ = 0, .5, .9, for the Consensus IV first-stage F-statistic (column 4), the Consensus IV
Anderson-Rubin (AR) statistic (column 5), and the combined Individual IV Anderson-
Rubin (AR) statistic (column 6). Results are based on 10,000 simulations of length
500, with 10 agents.

On the basis of these test statistics and p-values, we determine the
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proportion of rejections of the null hypothesis, reported in Tables 1 and

2 (as well as Tables B.1 and B.2 of Appendix B). Note that the NSR = 0

case corresponds to these null hypotheses, so the corresponding rows yield

information on the size of tests. Both the Anderson-Rubin statistics and

the first-stage F-statistics have very good empirical size, which is quite

close to the nominal size at 5%.

Table 2: Test for forecast efficiency N = 50 and T = 500

ρ NSR θ CONS IV F-stat CONS IV AR-stat IND IV AR-stats

.85

0 0 .0486 .0497 .0497

.8 0 1 .5889 .5591
.5 .0834 .0593 .0368

1.6
0 1 .9675 .9795
.5 .6864 .5114 .5457
.9 .0664 .0702 .0569

4.0 random .6433 .9487 .9998

.95

0 0 .0458 .0520 .0520

.8 0 1 .6853 .7031
.5 .0565 .0540 .0348

1.6
0 1 .9873 .9971
.5 .6275 .5091 .5827
.9 .0489 .0514 .0390

4.0 random .5204 .8939 1

Note: rejection rates are provided by process ρ = .85, .95, NSR = 0, .8, 1.6, 4.0, and
θ = 0, .5, .9, for the Consensus IV first-stage F-statistic (column 4), the Consensus IV
Anderson-Rubin (AR) statistic (column 5), and the combined Individual IV Anderson-
Rubin (AR) statistic (column 6). Results are based on 10,000 simulations of length
500, with 50 agents.

Other values of NSR yield power. The power decreases with θ, the

representativeness parameter governing the extent to which beliefs depart

from rational updating. When θ = 0, both the Anderson-Rubin statistics

and the first-stage F-statistics have satisfactory power; however, the power

deteriorates as θ increases. When θ = 0.9, the power of both statistics

is very low. As expected, the power increases significantly with T going

from 500 (Tables 1 and 2) to 1,000 (Tables B.1 and B.2). The power gain
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is marginal as N increases from 10 (Tables 1 and B.1) to 50 (Tables 2 and

B.2).

We are also interested in the impact of missing data – which is quite

common in forecasting datasets – upon the power of tests. In this simu-

lation, we focus on the particular setting that ρ = 0.85 and NSR = 0.8,

with θ = 0, sample size T = 500, and N = 10 agents. We introduce a pro-

portion of missing values (denoted as m) into both the forecast errors and

the forecast revisions (so these variables can have different NA patterns,

obtained at random for each simulation) using Bernoulli random variables,

varying the proportionm in {0, 0.2, 0.5}. Then missing values are imputed

using a simplistic approach: for each agent’s time series, all NA values are

replaced by the sample mean over the available values. As shown in Table

3, the power of the first-stage F-statistic and the Anderson-Rubin statistic

based on consensus forecasts remains almost the same, while the power

of the Anderson-Rubin statistic based on individual forecasts moderately

decreases with increasing m.

Table 3: Test for forecast efficiency: The impact of missing values

m CONS IV F-stat CONS IV AR-stat IND IV AR-stats
0 1 .5779 .5833

0.2 .9999 .5827 .5695
0.5 .9998 .5826 .4635

Note: rejection rates are provided for process ρ = .85, NSR = .8 with θ = 0, for
the Consensus IV first-stage F-statistic (column 2), the Consensus IV Anderson-Rubin
(AR) statistic (column 3), and the combined Individual IV Anderson-Rubin (AR)
statistic (column 4), by the proportion m of both the dependent and independent
variables are missing at random. Results are based on 10,000 simulations of length
500, with 10 agents.
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4 Efficiency in Macroeconomic Expectations

This section provides an analysis of the individual and consensus forecasts

from the Survey of Professional Forecasters (SPF) currently run by the

Federal Reserve Bank of Philadelphia covering 1968.Q4 through 2016.Q4.3

To facilitate the comparison to BGMS (2020), we use an annual forecast

horizon. For GDP and inflation, we transform the level of these variables

into implied growth rates from quarter t−1 to quarter t+3. For variables

such as unemployment rate and interest rates, we study the level in quarter

t+3. We compute consensus forecasts as the mean of individual forecasts.

The original data set has 333 agents and 193 quarters. About 90%

of the data is missing, and the time points that are missing for each

agent differ greatly. It is infeasible to merely omit times for which any

agents have an NA, as this would remove all of the data; therefore we use

the following techniques to refine the data. First, we split the data into

two distinct time spans: (1) 1968.Q4 through 1990.Q4 and (2) 1992.Q1

through 2016.Q4. The American Statistical Association and the National

Bureau of Economic Research initiated the survey in 1968Q4. Due to a

rapidly declining participation rate in the late 1980s, the Federal Reserve

Bank of Philadelphia took over the survey in 1990 with a new infusion

of forecasters. Our decision for sample split is driven by this structural

change in the survey. Also for this first span (called panel A), we restrict

to the six variables: nominal GDP, real GDP, GDP price index, indus-

trial production, housing starts, and unemployment. For the second span
3Federal Reserve Bank of Philadelphia, Survey of Professional Forecast-

ers: 1968.Q4 - 2016.Q4, https://www.philadelphiafed.org/surveys-and-data/
real-time-data-research/individual-forecasts
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(called panel B) we retain all 15 pairs of variables. In addition to the six

variables above, we also consider forecasts for consumer price index, real

consumption, real nonresidential investment, real residential investment,

real federal government consumption, real state and local government con-

sumption, three-month Treasury rate, ten-year Treasury rate, and AAA

corporate bond rate.

Further, within each of these two data subsets we consider those agents

who have responded at least 20% of the time. This gives N = 38 agents

and T = 89 quarters for the first subset and N = 36 agents and T = 100

quarters for the second subset. The remaining missing values are imputed

for each variable and agent by using the temporal average (described in

Section 3).

Individual forecast errors are calculated as actual values minus indi-

vidual forecasts. We use the first-released actual values in real time from

the Real Time Data Set for Macroeconomists provided by the Federal Re-

serve Bank of Philadelphia; see Croushore and Stark (2001).4 Individual

forecast revisions are computed as individual i’s forecasts made in quarter

t minus her forecasts made in quarter t− 1. We obtain consensus forecast

errors and forecast revisions as the average of the corresponding individ-

ual forecast errors and revisions. We take the instrumental variables to

be the two-period lagged forecast errors.

Table 4 presents the results based on consensus forecasts. We apply

the Anderson-Rubin test statistic; but since we have observed some het-

eroscedasticity in the regression residuals for certain cases, we also apply
4Federal Reserve Bank of Philadelphia, Real-Time Data Set for Macroeconomists:

1968.Q4 - 2016.Q4, https://www.philadelphiafed.org/surveys-and-data/
real-time-data-research/real-time-data-set-for-macroeconomists
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Table 4: Test for forecast efficiency in consensus forecast

(1) (2) (3) (4) (5) (6)
Variable AR-stat MS-stat F-stat IV OLS

Panel A: 1968.Q4-1990.Q4
NGDP 6.47 7.04 17.83 2.15 −0.11
RGDP 15.08 4.56 16.62 3.56 0.61
PGDP 60.06 62.16 79.32 3.93 2.02
INDP 3.25 0.54 6.89 NA 0.59
HOUS 42.14 135.46 8.90 NA 0.59
UNEM 11.38 29.04 65.09 1.93 0.37

Panel B: 1992.Q1-2016.Q4
NGDP 11.91 7.84 118.61 1.27 0.72
RGDP 10.39 7.26 83.00 1.34 0.58
PGDP 51.78 330.25 22.33 4.65 0.65
CPI 3.03 0.01 75.94 NA 0.22

RCON 43.11 27.31 54.79 2.85 0.45
INDP 17.72 9.27 168.57 2.30 0.78
RNRE 24.76 26.11 110.89 2.26 1.43
RRES 76.76 367.73 92.32 3.84 1.51
RFGC 46.63 205.5 21.46 5.85 0.18
RGSL 37.35 169.49 15.21 6.04 0.87
HOUS 137.46 325.61 5.75 NA 0.35
UNEM 70.97 24.38 233.55 1.85 1.26
tb3m 74.71 122.93 142.59 2.07 0.92
tn10y 7.38 17.14 69.36 0.93 −0.18
AAA 11.42 38.02 51.58 1.32 −0.28

Note: Column 2 gives the consensus Anderson-Rubin statistic. Column 3 gives the
consensus Mukisheva-Sun statistic. Column 4 gives the first-stage F-statistic for the
regression of consensus forecast revision on the consensus IV. Column 5 provides
the consensus IV estimate of β (“average then estimate”). Column 6 provides the
consensus OLS estimate of β. Data source: Philadelphia Fed Survey of Professional
Forecasters (SPF) forecasts for nominal GDP (NGDP), real GDP (RGDP), GDP
price index (PGDP), industrial production (INDP), housing start (HOUS), unem-
ployment (UNEM), consumer price index (CPI), real consumption (RCON), real
nonresidential investment (RNRE), real residential investment (RRES), real federal
government consumption (RFGC), real state and local government consumption
(RGSL), three-month Treasury rate (tb3m), ten-year Treasury rate (tn10y) and
AAA corporate bond rate (AAA).

the Mikusheva-Sun test statistic. For all cases except industrial produc-

tion in panel A and consumer price index in panel B, the Anderson-Rubin

test statistic (column 2) exceeds 3.84, the critical value of the chi-squared

distribution with 1 degree of freedom at the 5% significance level. Also

for these variables, the Mukisheva-Sun test statistic (column 3) exceeds
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the standard normal critical value. This suggests consensus forecast in-

efficiency when using public information. According to the first-stage F

statistic reported in column 4, consensus instrumental variables (i.e., the

two-period lagged consensus forecast errors) are strong for all cases, ex-

cept for three instances (industrial production and housing start in panel

A, and housing start in panel B).

For the cases with strong instrumental variables, we report the two-

stage least square coefficient estimates in column 5, revealing that they

are positive and statistically significant. This points to the underreaction

of consensus forecasts to news relative to FIRE. The level of underreac-

tion is considerably more pronounced than what the potentially biased

OLS estimates in column 6 suggest. Our two-stage least square estimates

yield an implied Kalman gain of 0.31, resulting in an average degree of

information rigidity of 0.69. It is worth noting that the implied degree

of information rigidity is higher than that found in CG (2015), reflecting

the presence of common noise and, therefore, a downward bias in their

estimate of information rigidity.5

Table 5 presents results based on individual forecasts. In column 2,

the combined p-values from the Anderson-Rubin test statistics are all

below 1%, indicating significant forecast inefficiency when using public

information at the individual forecaster level. The results in column 3, the

p-values from the Mukisheva-Sun test statistics, are the same. As shown

in column 4, the range of first-stage F-statistics, from the regression of

individual forecast revision on individual instrumental variable (i.e., the
5Using the SPF inflation forecasts, CG (2015)’s estimate yields an implied Kalman

gain of 0.42 and therefore a degree of information rigidity of 0.58.
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two-period lagged individual forecast error) for each agent, indicates a

large proportion of weak instruments. It is worth noting that the p-values

of the Anderson-Rubin and Mukisheva-Sun test statistics remain valid

even in the presence of weak instrumental variables.

In column 5, we present the two-stage least square coefficient esti-

mates for cases with strong instrumental variables, revealing that they

are both positive and statistically significant. This indicates that indi-

vidual forecasts exhibit an underreaction to news relative to FIRE. These

estimates, based on individual forecasts, imply an average degree of infor-

mation rigidity of 0.63, which is lower than that based on consensus fore-

casts in the previous table (i.e. 0.69). Nonetheless, this finding provides

pervasive evidence consistent with the presence of information rigidities

at the individual forecaster level, in contrast to the overreaction finding

reported in the BGMS (2020) study.

This result differs from the inference drawn from the OLS estimates

in column 6. According to the OLS estimates, it appears that individual

forecasters tend to overreact to public information. In fact, a majority of

the estimates (14 out of 21 cases) exhibit a negative sign.

5 Conclusion

This paper delves into the issue of regressing forecast errors on forecast

revisions, both at the individual and aggregate levels, which is a specific

aspect of forecast efficiency. Coibion and Gorodnichenko (2015) propose

an approach that involves aggregating forecasts and estimating the aggre-

gated time series regression – a method known as “average then estimate.”
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Table 5: Test for forecast efficiency in individual forecasts

(1) (2) (3) (4) (5) (6)
Variable AR p-value MS p-value F-stat Range IV OLS

Panel A: 1968.Q4-1990.Q4
NGDP < .01 < .01 [0.05, 61.61] 0.88 −0.24
RGDP < .01 < .01 [0.00, 32.96] 1.44 −0.04
PGDP < .01 < .01 [0.03, 48.30] 3.00 0.22
INDP < .01 < .01 [0.00, 24.70] 0.94 −0.26
HOUS < .01 < .01 [0.00, 8.54] NA −0.11
UNEM < .01 < .01 [0.08, 92.24] 1.33 −0.03

Panel B: 1992.Q1-2016.Q4
NGDP < .01 < .01 [0.00, 213.34] 1.28 −0.01
RGDP < .01 < .01 [0.02, 128.56] 1.33 0.02
PGDP < .01 < .01 [0.06, 55.61] 2.38 −0.31
CPI < .01 < .01 [0.27, 73.27] 1.07 −0.25

RCON < .01 < .01 [0.33, 100.50] 2.23 −0.09
INDP < .01 < .01 [0.14, 189.30] 2.20 0.01
RNRE < .01 < .01 [0.09, 66.52] 2.02 0.21
RRES < .01 < .01 [0.01, 44.85] 3.42 0.17
RFGC < .01 < .01 [0.20, 26.19] 3.42 −0.40
RGSL < .01 < .01 [0.00, 55.21] 3.94 −0.29
HOUS < .01 < .01 [0.00, 29.68] 3.13 −0.24
UNEM < .01 < .01 [0.00, 243.83] 1.75 0.58
tb3m < .01 < .01 [2.30, 105.28] 1.84 0.40
tn10y < .01 < .01 [1.14, 71.90] 0.88 −0.23
AAA < .01 < .01 [0.00, 44.10] 1.06 −0.32

Note: Column 2 combines the p-values for the individual Anderson-Rubin statis-
tics. Column 3 combines the p-values for the individual Mukisheva-Sun statistics.
Column 4 gives the range of first-stage F-statistics by agent, for the regression of
individual forecast revision on the two-period lagged individual forecast error. Col-
umn 5 provides the average of the individual IV estimators for those cases where
the first-stage F-statistic is above 10. NA values correspond to cases of a weak IV,
where the first-stage F-statistic is below 10. Column 6 is the average of the indi-
vidual OLS estimates of β. Data source: Philadelphia Fed Survey of Professional
Forecasters (SPF) forecasts for nominal GDP (NGDP), real GDP (RGDP), GDP
price index (PGDP), industrial production (INDP), housing start (HOUS), unem-
ployment (UNEM), consumer price index (CPI), real consumption (RCON), real
nonresidential investment (RNRE), real residential investment (RRES), real federal
government consumption (RFGC), real state and local government consumption
(RGSL), three-month Treasury rate (tb3m), ten-year Treasury rate (tn10y) and
AAA corporate bond rate (AAA).

On the other hand, Bordalo, Gennaioli, Ma, and Shleifer (2020) suggest

a different approach, which involves estimating the average relationship

by running separate regressions for each individual and then aggregating
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the results, known as the “estimate then average” approach. We demon-

strate that in the presence of public noise, both of these estimators exhibit

asymptotic bias. Both the “average then estimate” and “estimate then av-

erage” approaches have bias that is dependent on the Kalman gain, the

representativeness parameter θ (which governs the degree to which beliefs

deviate from rational updating), and the persistence of the underlying

signal. When θ = 0, in the large-agent case the asymptotic bias of the

“average then estimate” approach does not depend upon private noise,

and therefore is unbiased if there is no public noise.

To address these biases, we propose instrumenting forecast revisions

with past forecast errors. The choice of lags required for instrumentation

varies with the value of θ. When θ = 0, the instrumental variable is the

one-period lagged forecast error. However, if θ > 0, we need to use two

lags or higher. Given that we typically don’t have prior knowledge of the

exact value of θ, in practical applications, we recommend employing the

two-period lagged forecast errors as the instrumental variable.

We propose utilizing the Anderson-Rubin test for assessing forecast ef-

ficiency. This test has been demonstrated to be robust in the presence of

weak instrumental variables, as established by Moreira (2003). In Monte

Carlo simulations, we observe that the Anderson-Rubin statistics exhibit

excellent empirical size, closely aligning with the nominal size of 5%. Fur-

thermore, the test demonstrates satisfactory power when θ is either 0 or

takes very small values.

When testing forecast efficiency using data from the U.S. Survey of

Professional Forecasters dataset, two distinct approaches yield contrast-

ing results. The “average then estimate” approach provides positive but

26



potentially biased slope coefficient estimates. This suggests that con-

sensus forecasts tend to underreact to new information compared to the

full-information rational expectations. On the other hand, the “estimate

then average” approach, using individual forecasts, yields a majority of

negative estimates. This indicates overreaction to news at the individual

forecaster level.

In line with these findings, the Anderson-Rubin test and its jackknifed

version (which is robust to heteroscedasticity, as proposed in Mikusheva

and Sun (2022)) strongly reject the null hypothesis that forecasters effi-

ciently utilize information for almost all consensus forecasts and individual

forecasts. For consensus forecasts, our two-stage least square coefficient

estimates are both positive and statistically significant, signifying an un-

derreaction to news. It is noteworthy that this level of underreaction is

more pronounced than what the potentially biased OLS estimates suggest.

What’s even more intriguing and unexpected is the result that indi-

vidual forecasters also underreact to news. The two-stage least square

coefficient estimates are positive and statistically significant in this case.

This finding sharply contradicts the inference drawn from the OLS es-

timates, which implies that individual forecasters tend to overreact to

public information.

In conclusion, professional forecasters both at the individual and ag-

gregate levels tend to underreact to new information. This resolves the

puzzle in the literature regarding the underreaction of consensus forecasts

and the overreaction of individual forecasts.
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Appendix A Proofs

A.1 Proof of Theorem 1

First, from the autoregressive definition of {πt} we obtain

πt+h = ρhπt + νht .

Next, (1) together with πit|t = πit|t−1 +G(yit−πit|t−1) (the updating formula

for the rational Kalman Filter) implies that

πi,θt|t = (1 + θ)πit|t − θπit|t−1.

Hence the forecast error is

wit = ρh(πt − (1 + θ) πit|t + θπit|t−1) + νht ,

using πi,θt+h|t = ρhπi,θt|t . For the forecast revision, we can use the above

calculations to obtain

πi,θt+h|t = ρh
(
(1 + θ)((1−G)πit|t−1 +Gyit)− θπit|t−1

)
= ρh

(
((1 + θ)(1−G)− θ)πit|t−1 + (1 + θ)Gyit

)
.

Thus

πi,θt+h|t−1 = ρh+1πi,θt−1|t−1

= ρh+1
(
πit−1|t−2 + (1 + θ)G(yit−1 − πit−1|t−2)

)
= ρh+1

(
(1− (1 + θ)G)πit−1|t−2 + (1 + θ)Gyit−1

)
,
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from which it follows – using (1−G)πit−1|t−2 = πit−1|t−1 −Gyit−1 from the

rational Kalman Filter – that

(1−G)πi,θt+h|t−1 = ρh+1
(
(1− (1 + θ)G)(πit−1|t−1 −Gyit−1) + (1−G)(1 + θ)Gyit−1

)
= ρh+1

(
(1− (1 + θ)G)πit−1|t−1 + θGyit−1

)
= ρh

(
(1− (1 + θ)G)πit|t−1 + ρθGyit−1

)
.

The h = 0 case of this is

πi,θt|t−1 =
(1− (1 + θ)G)πit|t−1 + ρθGyit−1

1−G . (A.1)

From this result we obtain

πi,θt+h|t − (1−G)πi,θt+h|t−1 = ρh((1 + θ)Gyit − ρθGyit−1)

= ρh((1 + θ)Gεit +Gπt + θGut − ρθGεit−1),

using

ρyit−1 = πt − ut + ρεit−1. (A.2)
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Now multiplying the forecast error by G, we obtain

Gwit = ρhG(πt − (1 + θ)πit|t + θπit|t−1) +Gνht

= πi,θt+h|t − (1−G)πi,θt+h|t−1 +Gνht

− ρhG((1 + θ)πit|t − θπit|t−1)

− ρhG((1 + θ)Gεit + θut − ρθεit−1)

= (1−G)(πi,θt+h|t − π
i,θ
t+h|t−1) +Gνht

− ρhG((1 + θ)Gεit − ρθεit−1 + θut).

Finally, dividing by G yields (4).

Turning to f it , the stationarity is immediate; also εit is uncorrelated

with the {πt} process as well as past values yit−1, y
i
t−2, . . ., and hence is

uncorrelated with the third component, which is a linear combination of

such random variables. Moreover, the second component is a prediction

error, and therefore is uncorrelated with past data, and hence is uncorre-

lated with the third component. This third component can be rewritten

as

πit|t−1−ρyit−1 = ρ(πit−1|t−1−yit−1) = ρ(1−G)(πit−1|t−2−πt−1−εit−1), (A.3)

which has variance ρ2G2(P + σ2
ε ). Next, using

ut − ρεit−1 = πt − ρyit−1 = [0, 1, 1]f it
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(from (A.2)), the regression error can be written

eit = νht − ρh((1 + θ)εit + θ(πt − ρyit−1)) = νht + γ′f it .

Next, the covariate can be re-expressed as

xit = ρhG(πt − πi,θt|t−1 + (1 + θ)εit − ρθεit−1 + θut)

= ρhG
(
(1 + θ)(πt − πit|t−1)− θπt + θ/(1−G)(πit|t−1 − ρGyit−1)

+ (1 + θ)εit − ρθεit−1 + θut
)

= ρhG
(
(1 + θ)(πt − πit|t−1) + θ/(1−G)(πit|t−1 − ρyit−1) + (1 + θ)εit

)
= τ ′f it ,

where the second equality uses (A.1). Asymptotically, the bias in an OLS

regresssion is given by the covariance of xit with eit, divided by the variance

of xit. Since νht is uncorrelated with f it , the covariance is τ ′Var[f it ]γ; the

variance of xit is τ ′Var[f it ]τ . Simplifying yields the stated expression. �

A.2 Proof of Corollary 1

We can apply averaging over agents to the regression equations used in

the proof of Theorem 1, obtaining (5) directly from (4). The consensus

noise is

εt = N−1
N∑
i=1

εit = ιt +N−1
N∑
i=1

ηit,

which has variance σ2
ε = σ2

ι +σ2
η/N . The other calculations follows directly

from the proof of Theorem 1. �
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A.3 Proof of Theorem 2

Let us define the bivariate time series git = [εit, πt − πit|t−1]′, which is just

the first two components of f it , and hence is a stationary process. Using

(A.3), we find that

f it =

 git

−ρ(1−G)[1, 1]git−1

 .

Thus we can rewrite our covariates and regression errors eit in terms of git:

xit = ρhG
(
(1 + θ)[1, 1]git − ρθ[1, 1]git−1

)
eit = νht − ρh

(
[(1 + θ), θ]git − ρθ(1−G)[1, 1]git−1

)
.

Next we compute the autocovariance function Γ(k) = Cov[git,git−k]. From

our calculations of the variance of f it we know that Γ(0) = diag{σ2
ε , P}.

Now consider k = 1. Write

πt − πit|t−1 = ρ(πt − πit−1|t−1) + ut

= ρ
(
πt−1 − (1−G)πit−1|t−2 −Gyit−1

)
+ ut

= ρ
(
(1−G)(πt−1 − πit−1|t−2)−Gεit−1

)
+ ut,

so that we obtain

Cov(πt − πit|t−1, πt−1 − πit−1|t−2) = ρ(1−G)P.

Moreover, using εit−1 = yit−1 − πt−1 = (yit−1 − πit−1|t−1) + (πit−1|t−1 − πt−1)

and the orthogonality of forecast errors to linear functions of past data,
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we obtain

Cov(πt − πit|t−1, ε
i
t−1) = Cov(πt − πit|t−1, π

i
t−1|t−1 − πt−1) = −ρM,

where M = Var[πt − πit|t]. From prior calculations we know πit|t − πt =

(1 − G)(πit|t−1 − πt) + Gεit, so that M = (1−G)2P + G2σ2
ε = P (1 − G).

By similar arguments for k > 1, we find that

Γ(k) =

 0 0

−ρk(1−G)kP ρ(1−G)kP



for k ≥ 1. Next, we can relate the quantities vit to the bivariate git as

follows:

vit = πt − πit|t−1 + (πit|t−1 − ρyit−1)θG/(1−G)

= [0, 1]git − θρG[1, 1]git−1.

Then we can compute Cov[eit, vit−j] for j = 0, 1:

Cov[eit, vit] = −ρh
(
[1 + θ, θ]Γ(0)[0, 1]′ − ρθ(1−G)[1, 1]Γ(−1)[0, 1]′

−ρθG[1 + θ, θ]Γ(1)[1, 1]′ + ρ2θ2G(1−G)[1, 1]Γ(0)[1, 1]′
)

= −ρhP (θ + ρ2θ2(1−G))

Cov[eit, vit−1] = −ρh
(
[1 + θ, θ]Γ(1)[0, 1]′ − ρθ(1−G)[1, 1]Γ(0)[0, 1]′

−ρθG[1 + θ, θ]Γ(2)[1, 1]′ + ρ2θ2G(1−G)[1, 1]Γ(1)[1, 1]′
)

= −ρhP (θρP (1−G)− ρθ(1−G)P ) = 0.
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When θ = 0 the instrumental variable zit defined in (6) is vit, and the

covariance with eit is zero; but if θ > 0 we instead set the instrumental

variable to be any multiple of vit−1 (we choose this multiple to be one). This

shows that the instrumental variable is uncorrelated with the regression

error. For the covariate, similar calculations yield

Cov[xit, vit] = ρhG
(
(1 + θ)[1, 1]Γ(0)[0, 1]′ − ρθ[1, 1]Γ(−1)[0, 1]′

−ρθG(1 + θ)[1, 1]Γ(1)[1, 1]′ + ρ2θ2G[1, 1]Γ(0)[1, 1]′
)

= ρhGP (1 + θ + ρ2θ2)

Cov[xit, vit−1] = ρhG
(
(1 + θ)[1, 1]Γ(1)[0, 1]′ − ρθ[1, 1]Γ(0)[0, 1]′

−ρθG(1 + θ)[1, 1]Γ(2)[1, 1]′ + ρ2θ2G[1, 1]Γ(1)[1, 1]′
)

= ρh+1GP ((1 + θ)(1−G)− θ).

Hence the covariance of the instrumental variable with the covariate is

Cov[xit, zit] =


ρhGP if θ = 0

ρh+1GP ((1 + θ)(1−G)− θ) if θ > 0.

Therefore the instrumental variable yields a consistent estimator of the

regression parameter. �

A.4 Proof of Corollary 2

By averaging over the agents, we obtain

f t = N−1
N∑
i=1

f it =

 gt

−ρ(1−G)[1, 1]gt−1

 , gt =

 εt

πt − πt|t−1

 .
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Let Γ(k) = Cov[gt, gt−k] be the autocovariance function. With k ≥ 0,

Cov[εt, εt−k] = Cov[ιt + ηt, ιt−k + ηt−k] = 1{k=0}(σ2
ι + σ2

η/N),

where ηt = N−1∑N
i=1 η

i
t. Also it follows that εt is uncorrelated with πt−k−

πt−k|t−k−1, the second component of gt−k. Next, by recursively repeating

the argument used in the proof of Theorem 2, we find

πt − πit|t−1 = ρk(1−G)k(πt−k − πit−k|t−k−1)

−G
k∑
`=1

ρ`(1−G)`εit−` +
k−1∑
`=0

ρ`(1−G)`ut−`

πt − πt|t−1 = ρk(1−G)k(πt−k − πt−k|t−k−1)

−G
k∑
`=1

ρ`(1−G)`εt−` +
k−1∑
`=0

ρ`(1−G)`ut−`.

From this it follows that

Cov[πt − πt|t−1, εt−k] = −1{k>0}Gρ
k(1−G)k−1(σ2

ι + σ2
η/N)

Cov[πt − πt|t−1, πt−k − πt−k|t−k−1] = ρk(1−G)kP ,

and hence

Γ(0) =

 σ2
ι + σ2

η/N 0

0 P

 Γ(k) =

 0 0

−ρk(1−G)k−1(1−G)PG/G ρk(1−G)kP

 .

Also we obtain Γ(k + 1) = ρ(1−G)Γ(k) if k ≥ 1. Next, let

vt = N−1
N∑
i=1

vit = πt − πθt|t−1 = [0, 1]gt − ρθG[1, 1]gt−1,
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and observe that the regression errors are

et = N−1
N∑
i=1

eit = νht − ρh
(
[(1 + θ), θ]gt − ρθ(1−G)[1, 1]gt−1

)
.

Then we can compute for j ≥ 0:

Cov[et, vt−j] = −ρh
(
[1 + θ, θ]Γ(j)[0, 1]′ − ρθ(1−G)[1, 1]Γ(j − 1)[0, 1]′

−ρθG[1 + θ, θ]Γ(j + 1)[1, 1]′ + ρ2θ2(1−G)G[1, 1]Γ(j)[1, 1]′
)
.

For j ≥ 1 this covariance is

− ρh
(
ρ(1−G)[1 + θ, θ]Γ(j − 1)[0, 1]′ − ρθ(1−G)[1, 1]Γ(j − 1)[0, 1]′

−ρ2θG(1−G)[1 + θ, θ]Γ(j)[1, 1]′ + ρ2θ2(1−G)G[1, 1]Γ(j)[1, 1]′
)

= −ρh
(
ρ(1−G)([1 + θ, θ]− [θ, θ])Γ(j − 1)[0, 1]′

+ρ2θG(1−G)([θ, θ]− [1 + θ, θ])Γ(j)[1, 1]′
)

= −ρh
(
ρ(1−G)[1, 0]Γ(j − 1)[0, 1]′ − ρ2θG(1−G)[1, 0]Γ(j)[1, 1]′

)
= 0.

Also for j = 0 we obtain

− ρh
(
[1 + θ, θ]Γ(0)[0, 1]′ − ρθ(1−G)[1, 1]Γ(−1)[0, 1]′

−ρθG[1 + θ, θ]Γ(1)[1, 1]′ + ρ2θ2(1−G)G[1, 1]Γ(0)[1, 1]′
)

= −θρh(P + σ2
ε )
(
G− ρ2(1−G+ θG)(G−G) + ρ2θ(1−G)G

)
,

which is zero if and only if θ = 0. Hence zt is uncorrelated with the

regression error et, whether θ = 0 or not. For the consensus covariate xt,
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its covariance with vt−j is

Cov[xt, vt−j] = ρhG
(
(1 + θ)[1, 1]Γ(j)[0, 1]′ − ρθ(1 + θ)G[1, 1]Γ(j + 1)[1, 1]′

−ρθ[1, 1]Γ(j − 1)[0, 1]′ + ρ2θ2G[1, 1]Γ(j)[1, 1]′
)
.

When j = 0 this becomes

ρhG(P + σ2
ε )
(
(1 + θ)G− ρ2θ(1 + (1 + θ)G)(G−G) + ρ2θ2G

)
,

which is non-zero. For j ≥ 1, we obtain

ρh+jG(1−G)j−1P ((1−G)(1 + θ)− θ)(1− ρ2θG(1−G/G)),

which is also non-zero. Hence the zt has non-trivial correlation with the

covariates, and therefore as an instrumental variable will yield a consistent

estimate of the regression parameter. �
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Appendix B Additional Simulation Results

Table B.1: Test for forecast efficiency N = 10 and T = 1, 000

ρ NSR θ CONS IV F-stat CONS IV AR-stat IND IV AR-stats

.85

0 0 .0454 .0486 .0486

.8 0 1 .8591 .8759
.5 .1150 .0724 .0552

1.6
0 1 .9991 .9997
.5 .9275 .7928 .8425
.9 .0809 .0923 .0877

4.0 random .8656 .9957 1

.95

0 0 .0528 .0511 .0511

.8 0 1 .9224 .9475
.5 .0720 .0590 .0464

1.6
0 1 1 1
.5 .8918 .7766 .8495
.9 .0514 .0484 .0399

4.0 random .7626 .9799 1

Note: rejection rates are provided by process ρ = .85, .95, NSR = 0, .8, 1.6, 4.0, and
θ = 0, .5, .9, for the Consensus IV first-stage F-statistic (column 4), the Consensus IV
Anderson-Rubin (AR) statistic (column 5), and the combined Individual IV Anderson-
Rubin (AR) statistic (column 6). Results are based on 10,000 simulations of length
1, 000, with 10 agents.
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Table B.2: Test for forecast efficiency N = 50 and T = 1, 000

ρ NSR θ CONS IV F-stat CONS IV AR-stat IND IV AR-stats

.85

0 0 .0517 .0495 .0495

.8 0 1 .8489 .8513
.5 .1241 .0720 .0460

1.6
0 1 .9997 .9999
.5 .9343 .8091 .8580
.9 .0907 .0932 .0802

4.0 random .9022 .9989 1

.95

0 0 .0448 .0504 .0504

.8 0 1 .9288 .9491
.5 .0761 .0622 .0405

1.6
0 1 1 1
.5 .9041 .7793 .8639
.9 .0499 .0518 .0361

4.0 random .8121 .9910 1

Note: rejection rates are provided by process ρ = .85, .95, NSR = 0, .8, 1.6, 4.0, and
θ = 0, .5, .9, for the Consensus IV first-stage F-statistic (column 4), the Consensus IV
Anderson-Rubin (AR) statistic (column 5), and the combined Individual IV Anderson-
Rubin (AR) statistic (column 6). Results are based on 10,000 simulations of length
1, 000, with 50 agents.
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